TitleTwo functional but noncomplementing Drosophila tyrosine decarboxylase genes
Publication TypeJournal Article
Year of Publication2005
AuthorsCole, SH, Carney, GE, McClung, CA, Willard, SS, Taylor, BJ, Hirsh, J
JournalJournal of Biological Chemistry
Type of ArticleJournal Article

The trace biogenic amine tyramine is present in the nervous systems of animals ranging in complexity from nematodes to mammals. Tyramine is synthesized from tyrosine by the enzyme tyrosine decarboxylase (TDC), a member of the aromatic amino acid family, but this enzyme has not been identified in Drosophila or in higher animals. To further clarify the roles of tyramine and its metabolite octopamine, we have cloned two TDC genes from Drosophila melanogaster, dTdc1 and dTdc2. Although both gene products have TDC activity in vivo, dTdc1 is expressed nonneurally, whereas dTdc2 is expressed neurally. Flies with a mutation in dTdc2 lack neural tyramine and octopamine and are female sterile due to egg retention. Although other Drosophila mutants that lack octopamine retain eggs completely within the ovaries, dTdc2 mutants release eggs into the oviducts but are unable to deposit them. This specific sterility phenotype can be partially rescued by driving the expression of dTdc2 in a dTdc2-specific pattern, whereas driving the expression of dTdc1 in the same pattern results in a complete rescue. The disparity in rescue efficiencies between the ectopically expressed Tdc genes may reflect the differential activities of these gene products. The egg retention phenotype of the dTdc2 mutant and the phenotypes associated with ectopic dTdc expression contribute to a model in which octopamine and tyramine have distinct and separable neural activities.

URL<Go to ISI>://WOS:000228236800075