TitleMinimal selfing, few clones, and no among-host genetic structure in a hermaphroditic parasite with asexual larval propagation
Publication TypeJournal Article
Year of Publication2006
AuthorsCriscione, CD, Blouin, M
Type of ArticleJournal Article

Little is known about actual mating systems in natural populations of parasites or about what constitutes the limits of a parasite deme. These parameters are interesting because they affect levels of genetic diversity, opportunities for local adaptation, and other evolutionary processes. We expect that transmission dynamics and the distribution of parasites among hosts should have a large effect on mating systems and demic structure, but currently we have mostly speculation and very few data. For example, infrapopulations (all the parasites in a single host) should behave as demes if parasite offspring are transmitted as a clump from host to host over several generations. However, if offspring are well mixed, then the parasite component population (all the parasites among a host population) would function as the deme. Similarly, low mean intensities or a high proportion of worms in single infections should increase the selfing rate. For species having an asexual amplification stage, transmission between intermediate and definitive (final) hosts will control the variance in clonal reproductive success, which in turn could have a large influence on effective sizes and rates of inbreeding. We examined demic structure, selfing rates, and the variance in clonal reproductive success in natural populations of Plagioporus shawi, a hermaphroditic trematode that parasitizes salmon. Overall levels of genetic diversity were very high. An a posteriori inference of population structure overwhelmingly supports the component population as the deme, rather than individual infrapopulations. Only a single pair of 597 adult individuals was identified as clones. Thus, the variance in clonal reproductive success was almost zero. Despite being hermaphroditic, P. shawi appears to be almost entirely outcrossing. Genetic estimates of selfing (

URL<Go to ISI>://WOS:000236698100013