TitleHalophilanema prolata n. gen., n. sp (Nematoda: Allantonematidae), a parasite of the intertidal bug, Saldula laticollis (Reuter)(Hemiptera: Saldidae) on the Oregon coast
Publication TypeJournal Article
Year of Publication2012
AuthorsPoinar, GO
JournalParasites & Vectors
Volume5
Pagination10
Type of ArticleJournal Article
ISSN1756-3305
Abstract

Background: It is rare to find terrestrial nematode lineages parasitizing arthropods inhabiting the intertidal or littoral zone of the oceans. During an ecological study along the Oregon dunes, an allantonematid nematode (Tylenchomorpha: Allantonematidae) was discovered parasitizing the intertidal shore bug, Saldula laticollis (Reuter) (Hemiptera: Saldidae). This shore bug is adapted to an intertidal environment and can survive short periods of submergence during high tides. The present study describes the nematode parasite and discusses aspects of its development, ecology and evolution. Methods: Adults and last instar nymphs of S. laticollis (Hemiptera: Saldidae) were collected from the high intertidal zone among clumps of Juncus L. (Juncaceae) plants at Waldport, Oregon on October 3, 2011. The bugs were dissected in 1% saline solution and the nematodes killed in 1% Ringers solution and immediately fixed in 5% formalin (at 20 degrees C). Third stage juveniles removed from infected hosts were maintained in 1% saline solution until they matured to the adult stage, molted and mated. Results: Halophilanema prolata n. gen., n. sp. (Nematoda: Allantonematidae) is described from last instar nymphs and adults of the intertidal bug, Saldula laticollis on the Oregon coast. The new genus can be distinguished from other genera in the Allantonematidae by a stylet lacking basal knobs in both sexes, an excretory pore located behind the nerve ring, ribbed spicules, a gubernaculum, the absence of a bursa and the elongate-tubular shape of the ovoviviparous parasitic females. Studies of the organogenesis of Halophilanema showed development to third stage juveniles in the uterus of parasitic females. Maturation to the free-living adults and mating occurred in the environment. The incidence of infection of S. laticollis ranged from 0% to 85% depending on the microhabitat in the intertidal zone. Conclusions: Based on the habitat and morphological characters, it is proposed that Halophilanema adapted a parasitic existence fairly recently, evolutionarily speaking. It was probably a free-living intertidal or shore nematode that fed on microorganisms, especially fungi, in the intertidal habitat and became parasitic after saldids entered the environment. Halophilanema represents the first described nematode parasite of an intertidal insect.

URL<Go to ISI>://WOS:000301662200001
DOI10.1186/1756-3305-5-24