TitleCurrent Status of Marine Protected Areas in Latin America and the Caribbean
Publication TypeJournal Article
Year of Publication2008
AuthorsGuarderas, AP, Hacker, SD, Lubchenco, J
JournalConservation Biology
Volume22
Pagination1630-1640
Type of ArticleJournal Article
ISSN0888-8892
Abstract

Marine protected areas (MPAs), including no-take marine reserves (MRs), play an important role in the conservation of marine biodiversity. We document the status of MPAs and MRs in Latin America and the Caribbean, where little has been reported on the scope of such protection. Our survey of protected area databases, published and unpublished literature, and Internet searches yielded information from 30 countries and 12 overseas territories. At present more than 700 MPAs have been established, covering more than 300,000 km(2) or 1.5% of the coastal and shelf waters. We report on the status of 3 categories of protection: MPAs (limited take throughout the area), MRs (no-take throughout the area), and mixed-use (a limited-take MPA that contains an MR). The majority of protected areas in Latin America and the Caribbean are MPAs, which allow some or extensive extractive activities throughout the designated area. These 571 sites cover 51,505 km(2) or 0.3% of coastal and shelf waters. There are 98 MRs covering 16,862 km(2) or 0.1% of the coastal and shelf waters. Mixed-use MPAs are the fewest in number (87), but cover the largest area (236,853 km(2), 1.2%). Across Latin America and the Caribbean, many biogeographic provinces are underrepresented in these protected areas. Large coastal regions remain unprotected, in particular, the southern Pacific and southern Atlantic coasts of South America. Our analysis reveals multiple opportunities to strengthen marine conservation in Latin America and the Caribbean by improving implementation, management, and enforcement of existing MPAs; adding new MPAs and MRs strategically to enhance connectivity and sustainability of existing protection; and establishing new networks of MPAs and MRs or combinations thereof to enhance protection where little currently exists.

URL<Go to ISI>://WOS:000261395700039
DOI10.1111/j.1523-1739.2008.01023.x