TitleCircadian Clock Regulates Response to Pesticides in Drosophila via Conserved Pdp1 Pathway
Publication TypeJournal Article
Year of Publication2010
AuthorsBeaver, LM, Hooven, LA, Butcher, SM, Krishnan, N, Sherman, KA, Chow, ESY, Giebultowicz, J
JournalToxicological Sciences
Volume115
Pagination513-520
Type of ArticleJournal Article
ISSN1096-6080
Abstract

Daily rhythms generated by the circadian clock regulate many life functions, including responses to xenobiotic compounds. In Drosophila melanogaster, the circadian clock consists of positive elements encoded by cycle (cyc) and Clock (Clk) and negative elements encoded by period (per) and timeless (tim) genes. The epsilon-isoform of the PAR-domain protein 1 (Pdp1 epsilon) transcription factor is controlled by positive clock elements and regulates daily locomotor activity rhythms. Pdp1 target genes have not been identified, and its involvement in other clock output pathways is not known. Mammalian orthologs of Pdp1 have been implicated in the regulation of xenobiotic metabolism; therefore, we asked whether Pdp1 has a similar role in the fly. Using pesticides as model toxicants, we determined that disruption of Pdp1 epsilon increased pesticide-induced mortality in flies. Flies deficient for cyc also showed increased mortality, while disruption of per and tim had no effect. Day/night and Pdp1-dependent differences in the expression of xenobiotic-metabolizing enzymes Cyp6a2, Cyp6g1, and alpha-Esterase-7 were observed and likely contribute to impaired detoxification. DHR96, a homolog of constitutive androstane receptor and pregnane X receptor, is involved in pesticide response, and DHR96 expression decreased when Pdp1 was suppressed. Taken together, our data uncover a pathway from the positive arm of the circadian clock through Pdp1 to detoxification effector genes, demonstrating a conserved role of the circadian system in modulating xenobiotic toxicity.

URL<Go to ISI>://WOS:000277997100021
DOI10.1093/toxsci/kfq083